CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain
Iryna A. Khasabovaa, James Gielissenc, Anisha Chandiramania, Catherine Harding-Rosea, Desiree Abu Odehb, Donald A. Simonea,c and Virginia S. Seyboldb,c

Introduction
Pain associated with cancer and tumor growth is often difficult to manage. It has been estimated that over half of patients with cancer experience tumor-related pain, and approximately two thirds of patients experience pain with advanced disease (van den Beuken-van Everdingen \textit{et al.}, 2007), particularly with metastases to bone (Coleman, 2006). Although tumor-associated pain may incorporate components of inflammation and nerve injury that are consistent with tumor biology and growth that may impinge on peripheral nerves, several lines of evidence indicate that tumor pain is distinct from pain resulting from inflammation or nerve injury. In primary somatosensory neurons that innervate a tumor-bearing limb, tumor growth produces phenotypic changes that differ from those associated with a similarly localized site of peripheral inflammation or nerve injury (Honore \textit{et al.}, 2000). Further, chemical mediators released from fibrosarcoma cells \textit{in vitro} increase the expression of proteins in primary somatosensory neurons that contribute to increased neuronal excitability (Khasabova \textit{et al.}, 2007; Schweizerhof \textit{et al.}, 2009). These data provide evidence that chemicals released from tumor cells are sufficient to promote hyperalgesia that may differ from that experienced in other pain syndromes.

Cannabis sativa has a long history of use for management of pain. Although Cannabis contains many bioactive compounds, the component Δ^2-tetrahydrocannabinol is most noted for its activation of cannabinoid receptors that were identified almost two decades ago (Matsuda \textit{et al.}, 1990; Munro \textit{et al.}, 1993). Endogenous and synthetic agonists of CB1 and CB2 receptors were subsequently reported to be effective in alleviating hyperalgesia in models of pain associated with nerve injury and inflammation (see Fox and Bevan, 2005; Guindon and Hohmann, 2008 for reviews), and more recently tumor growth (Hamamoto \textit{et al.}, 2007; Guerrero \textit{et al.}, 2008; Curto-Reyes \textit{et al.}, 2010). Previously, we found that local injection of arachidonylethanolamine (AEA) reduced mechanical hyperalgesia by a CB1 receptor-dependent mechanism in a murine model of tumor pain (Khasabova \textit{et al.}, 2008). Increased expression of CB1 receptors in the somatosensory neurons innervating the tumor-bearing limb contributed to the effect. We also found that local injection of a nonselective cannabinoid receptor agonist decreased tumor-related hyperalgesia through peripheral CB2 as well as CB1 receptor-dependent mechanisms (Potenzieri \textit{et al.}, 2008).

Investigations of the efficacy of CB2 receptor agonists in models of hyperalgesia have escalated in the last several
years with the development of several CB2 receptor selective agonists (A-796260: Yao et al., 2008; A-836339: Yao et al., 2009; AM1241: Quartilho et al., 2003; Ibrahim et al., 2005; Curto-Reyes et al., 2010; Hsieh et al., 2010; Lozano-Ondoua et al., 2010; GW405833: Whiteside et al., 2005; Leichsenring et al., 2009; HU308: Hanus et al., 1999; JWH133: Yamamoto et al., 2008b). An advantage of CB2 receptor-agonists is that they are effective agonists that lack the remaining components of the tetrad of cannabinoid pharmacology mediated by CB1 receptors: sedation, motor impairment, and hypothermia (Malan et al., 2001). To date, no study has addressed whether coactivation of CB1 and CB2 receptors by synthetic agonists has a synergistic effect in an assay of hyperalgesia.

In light of evidence that CB2 receptor ligands reduce mechanical hyperalgesia in models of inflammation and nerve injury, and evidence that tumors have interactions with sensory neurons that are different from those of other forms of peripheral injury, we determined whether a CB2 receptor agonist reduced tumor-evoked mechanical hyperalgesia through a peripheral mechanism and whether a beneficial effect may occur by the coadministration of a CB1 and a CB2 receptor agonist. As there is evidence that the release of endogenous opioid peptides from skin mediates the effect of CB2 agonists in the periphery (Ibrahim et al., 2005), we also determined whether naloxone blocked the effect of the CB2 agonist. All cannabinoid agonists had an efficacy comparable with that of morphine. Moreover, a synergistic interaction of the agonists in reducing mechanical hyperalgesia provides a rationale for development of peripherally restricted dually active CB1 and CB2 receptor agonists for the management of cancer pain.

Methods

Subjects

Adult male C3H/HeNCr MTv− mice (National Cancer Institute, Bethesda, Maryland, USA; 25–30 g) were used throughout this study. Mice were housed four per cage, allowed free access to food and water, and maintained on a 12-h light/dark schedule. All behavioral testing was performed during the light cycle. Experiments adhered to the guidelines set forth by the Committee for Research and Ethical Issues of the International Association for the Study of Pain, and procedures were approved by the Animal Care Committee at the University of Minnesota.

Maintenance and implantation of fibrosarcoma cells

NCTC clone 2472 fibrosarcoma cells (American Type Culture Collection, Manassas, Virginia, USA) were maintained as described earlier (Khasabova et al., 2008). This clone was derived from a connective tissue tumor in a C3H mouse, thus the fibrosarcoma cells are syngeneic with C3H/He mice (Wacnik et al., 2001). Under isoflurane (2%) anesthesia, fibrosarcoma cells (2 × 10⁵ cells in 10 µl of phosphate buffered saline, pH 7.3) were injected into and around the calcaneus bone of the animal’s left hind paw. Histological studies documented that this approach produces a tumor with bone osteolysis (Wacnik et al., 2001).

Drug solutions and administration

The CB2 receptor agonist AM1241 [(2-iodo-5-nitrophe-nyl)-(1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl) methanone; Cayman Chemical, Ann Arbor, Michigan, USA] was dissolved in Tocrisolve:dimethylsulfoxide [Tocris, Ellisville, Missouri, USA, dimethyl sulfoxide (DMSO); 2:1; 10 µg/µl]. The CB1 receptor agonist arachidonylec- tropylamide (ACPA; Tocris) was prepared in Tocrisolve.
100 (10 μg/μl). The CB1 receptor antagonist AM281 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide; Tocris] and the CB2 receptor antagonist AM630 [6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone; Tocris] were each prepared in DMSO (10 μg/μl). Each drug exhibits more than a 100-fold difference in affinity for CB1 and CB2 receptors (Lan et al., 1999; Ross et al., 1999). Morphine sulfate (Sigma-Aldrich, St Louis, Missouri, USA; 22 μg/μl) and naloxone hydrochloride (Sigma-Aldrich; 5 μg/μl) were prepared in water. All drugs were diluted to the appropriate dose in saline for injection in a volume of 10 μl. The highest concentration of DMSO contained in a dose was used as the vehicle control. Drugs or vehicle were injected subcutaneously into the plantar surface (intraplantar) of the hind paw.

Analysis of dose–response effects
The percentage of the maximum drug effect was calculated for each dose of a drug to determine the dose–response relationship of the drug.

\[
\% \text{ maximum drug effect} = \left(\frac{\text{predrug response} - \text{postdrug response}}{\text{predrug response} - \text{maximum postdrug response}} \right) \times 100 \%
\]

Calculating maximum drug effect produced a limited number of values greater than 100 or less than 0, which occurred at high and low doses, respectively. These values were adjusted to 100 and 0, respectively, to address only the antihyperalgesic effect of each drug. The software FlashCalc (developed by M. Ossipov; www.u.arizona.edu/michaelo/flashcalc.html) was used to compute the ED50.

Statistical analyses
All data are presented as the group mean ± standard error of the mean. Results were compared between groups and across time using one-way analyses of variance (ANOVA) followed by Bonferroni’s multiple comparisons test. The isobolographic analysis of data for AM1241 and ACPA were conducted with FlashCalc and graphed as described by Fairbanks et al. (2000). For all statistical analyses, a probability value of less than 0.05 was considered significant.

Results
CB2 receptor agonist, AM1241, reduced mechanical hyperalgesia in tumor-bearing mice
The CB2 receptor agonist AM1241, was chosen for study because of its high selectivity for CB2 over CB1 receptors in rodent tissues compared with other agonists (> 80-fold; Ibrahim et al., 2006; Marriott and Huffman, 2008). Intraplantar injection of the CB2 receptor agonist AM1241 ipsilateral to the tumor-bearing paw decreased mechanical hyperalgesia in a time-dependent manner. The reduction in mechanical hyperalgesia persisted from 60 to 180 min after agonist injection when compared with vehicle (Tocrisolve:DMSO 2:1, intraplantar, Fig. 1a) and dissipated after 3 h. Intraplantar injection of vehicle alone

![Graph showing the effect of AM1241 on mechanical hyperalgesia](image)

The synthetic CB2 receptor agonist AM1241 attenuated tumor-related mechanical hyperalgesia. (a) AM1241 (60 μg, intraplantar) reduced mechanical hyperalgesia over 3 h compared with vehicle (Tocrisolve:dimethyl sulfoxide, 2:1). Intraplantar injection of AM1241 contralateral to the tumor did not modulate hyperalgesia in the tumor-bearing paw (C). The gray band represents the mean ± standard error of the mean of the withdrawal response of naive mice. *Different from vehicle at P < 0.05 (n = 6 mice/group; two-way analysis of variance (ANOVA) with Bonferroni’s multiple comparisons test). V, vehicle. Data in (b) represent effects 120 min after drug injection.
did not affect mechanical hyperalgesia at any time point assayed. Injection of AM1241 contralateral to the tumor did not alter hyperalgesia in the tumor-bearing paw at the representative time point of 120 min after injection (P = 0.90 compared with vehicle, Student’s t-test, n = 4–6 mice/group). These data indicate that the antihyperalgesic effect of AM1241 injected ipsilateral to the tumor was mediated by an action at a local site and not a site within the central nervous system.

The receptor selectivity of AM1241 was confirmed by coadministration with either AM630 or AM281. Coadministration with the CB2 receptor antagonist AM630 (4 mg, intraplantar) blocked the antihyperalgesic effect of AM1241 (P < 0.05, one-way ANOVA), but the antihyperalgesia following AM1241 was unaffected by coadministration with the CB1 receptor antagonist AM281 (10 μg; P = 0.67, one-way ANOVA, Fig. 1b). Importantly, the efficacy of this dose of AM281 was demonstrated in its blockade of the antihyperalgesic effect of the CB1 agonist ACPA (see below). Neither AM630 (Fig. 1b) nor AM281 (Fig. 2b) administered alone in tumor-bearing mice reduced mechanical hyperalgesia compared with vehicle (P = 0.963, one-way ANOVA). Together, these data indicate that local injection of AM1241 into the hind paw ipsilateral to the tumor in tumor-bearing mice reduced mechanical hyperalgesia through a CB2 receptor-dependent mechanism.

CB1 receptor agonist, arachidonylcyclopropylamide, reduced mechanical hyperalgesia in tumor-bearing mice

Occurrence of CB1 receptors on somatosensory neurons and CB2 receptors on other sites within the region of sensory transduction in the skin raises the possibility of an interaction between CB1 and CB2 receptor agonists in reducing mechanical hyperalgesia. Testing for this interaction required determination of an ED50 for a CB1 receptor agonist. The CB1 receptor agonist ACPA was chosen because it is over 300-fold more selective for CB1 than CB2 receptors (Hillard et al., 1999). Intraplantar injection of ACPA into the tumor-bearing paw attenuated mechanical hyperalgesia in a time-dependent manner (Fig. 2a). When compared with the vehicle control (saline:Tocrisolve 2:1, intraplantar), the reduction in mechanical hyperalgesia persisted for another 30 min, and hyperalgesia returned to the baseline level by 180 min. The latency to the antihyperalgesic effect was longer than that observed for AEA (Khasabova et al., 2008). Therefore, we tested another synthetic analog of AEA, methanandamide, to determine whether this property was specific to ACPA. Methanandamide (1 μg) exhibited a similar time course of action and did not reduce mechanical hyperalgesia until 120 min after drug injection (P < 0.002 compared with predrug, one-way ANOVA, Fig. 3). Injection of the vehicle ipsilateral to the tumor did not alter mechanical hyperalgesia at any time point. Injection of ACPA (intraplantar) contralateral to the
confirming a local action of ACPA when injected into the tumor-bearing paw.

The role of CB1 receptors in mediating the effect of ACPA was confirmed by coadministration of the drug with either a CB1 or CB2 receptor antagonist. The CB1 receptor antagonist AM281 (10 mg) abrogated the reduction in mechanical hyperalgesia produced by ACPA (60 mg, intraplantar, *P* < 0.001, one-way ANOVA, Fig. 2b). The CB2 receptor antagonist AM630 (4 mg) had no effect. Together these data demonstrate that local injection of ACPA into the tumor-bearing hind paw of mice reduced mechanical hyperalgesia through a CB1 receptor mechanism at 120 min after drug injection.

Antihyperalgesic effects of AM1241 and arachidonylcyclopropylamide are dose-dependent

The antihyperalgesic effects of the CB2 receptor agonist, AM1241, and the CB1 receptor agonist, ACPA, were dose-dependent (Fig. 4a). Given that the effect of AM1241 was of long duration and that all doses tested were not different than the effect at 120 min after injection, data from the time point of 120 min were used to calculate an ED50 of 19.5 mg [95% confidence interval (CI): 14.0–27.1 mg] and 18.4 mg (95% CI: 9.0–37.7 mg), respectively. Coadministration of agonists ACPA and AM1241 (1 : 1 ratio; 1 + 1 was plotted as 1) reduced mechanical hyperalgesia with an ED50 of 0.69 mg (95% CI: 0.3–1.5 mg). Data were acquired from tumor-bearing mice 120 min after drug injection; dose is plotted on a log scale. (b) Isobologram demonstrating the synergistic interaction of ACPA and AM1241 in reducing mechanical hyperalgesia (critical *t* value = 1.9; calculated *t* value = 5.0). ED50 values and synergy were determined using FlashCalc.

Coinjection of AM1241 and arachidonylcyclopropylamide (ACPA) reduced mechanical hyperalgesia in a synergistic manner. (a) The antihyperalgesic effects of AM1241 and ACPA injected individually or coadministered were dose-dependent. AM1241 and ACPA injected individually reduced mechanical hyperalgesia with an ED50 of 19.5 µg [95% confidence interval (CI): 14.0–27.1 µg] and 18.4 µg (95% CI: 9.0–37.7 µg), respectively. Coadministration of agonists ACPA and AM1241 (1 : 1 ratio; 1 + 1 was plotted as 1) reduced mechanical hyperalgesia with an ED50 of 0.69 µg (95% CI: 0.3–1.5 µg). Data were acquired from tumor-bearing mice 120 min after drug injection; dose is plotted on a log scale. (b) Isobologram demonstrating the synergistic interaction of ACPA and AM1241 in reducing mechanical hyperalgesia (critical *t* value = 1.9; calculated *t* value = 5.0). ED50 values and synergy were determined using FlashCalc.

(60 µg) reduced mechanical hyperalgesia by 46% (Table 1) at 120 min after drug administration. An ED50 of 18.4 µg (95% CI: 9.0–37.7 µg) was calculated from the resulting dose–response relationship.
ally yielded equivalent ED50 values for the two drugs, a synergistic mechanism of combining both cannabinoid receptor agonists was supported. Coadministering both cannabinoid receptor agonists yielded an additive effect of the two agonists indicating that the combined CB1 and CB2 receptor agonists (1:1) reduced mechanical hyperalgesia in a synergistic manner (critical t value = 1.9; calculated t value = 5.0).

Antihyperalgesic effect of cannabinoid agonists was not mediated by opioid receptors

It has been reported that the antinociceptive effect of AM1241 was blocked by the local injection of naloxone in an assay of thermal nociception in rats (Ibrahim et al., 2005). Therefore, we tested whether naloxone altered the effect of AM1241 on mechanical hyperalgesia in tumor-bearing mice. Naloxone (5 μg, intraplantar) did not alter the antihyperalgesic effect produced by either AM1241 (60 μg, intraplantar) or ACPA (60 μg, intraplantar), nor did it alter the mechanical hyperalgesia when injected alone (Fig. 5). Evidence that this dose of naloxone blocked the antihyperalgesic effect of morphine (7 μg, intraplantar, P < 0.001, one-way ANOVA) confirmed its effectiveness in blocking opioid receptors. This dose of morphine had a maximum effect at 30 min after drug injection (Fig. 6a) and was the maximally effective intraplantar dose (Fig. 6b), reducing mechanical hyperalgesia by 53% (Table 1).

Given the clinical use of morphine in the treatment of cancer pain, we compared its maximum efficacy with that of selective cannabinoid receptor agonists administered by the same route in the same model (Table 1). There was no difference in efficacy among these treatments (P = 0.49, one-way ANOVA).

Discussion

Approximately half of the patients with cancer experience pain regardless of the stage of the disease (Portenoy, 1989), and the incidence increases to 70% in patients over 60 years of age (SEER cancer statistics review 1975–2007, National Cancer Institute). Not only is pain prominent in patients with advanced cancer, but over 40% of these individuals experience ‘breakthrough pain’, pain not managed by ongoing palliative treatment (Greco et al., 2010). Clinical evidence of the refractoriness of cancer pain to opiates (Portenoy, 1999, Mancini et al., 2004) coupled with preclinical evidence that the expression of μ-opioid receptors is lower in somatosensory neurons affected by tumors compared with those of naive animals (Yamamoto et al., 2008a) underscores the need for alternative treatments for cancer pain. Using a murine model of tumor pain, this study demonstrates that local administration of the synthetic cannabinoid receptor agonist, AM1241, reduced mechanical hyperalgesia through a CB2 receptor-dependent mechanism and with an efficacy comparable with that of local injection of morphine. When used in combination with a selective CB1 receptor agonist, ACPA, the agonists exhibited synergy in decreasing the tumor-evoked mechanical hyperalgesia.

Table 1 Summary of maximal drug effects

<table>
<thead>
<tr>
<th>Drug</th>
<th>Most effective dose (μg)</th>
<th>Inhibition of mechanical hyperalgesia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPA</td>
<td>60</td>
<td>46 ± 12 (6)</td>
</tr>
<tr>
<td>AM1241</td>
<td>60</td>
<td>40 ± 9 (6)</td>
</tr>
<tr>
<td>ACPA + AM1241</td>
<td>1 (each)</td>
<td>26 ± 7 (6)</td>
</tr>
<tr>
<td>Morphine</td>
<td>7</td>
<td>53 ± 13 (7)</td>
</tr>
</tbody>
</table>

Data for cannabinoid ligands were determined at 120 min after drug injection and for morphine were determined 30 min after drug injection, which coincided with the maximally effective time point for each drug. The number in parentheses is the sample size for each drug treatment. The effect of each drug on mechanical hyperalgesia in tumor-bearing mice was calculated as a percentage of the maximum possible effect on hyperalgesia.

Inhibition of hyperalgesia (%) = (predrug response – postdrug response) / predrug response × 100

ACPA, arachidonylcyclopropylamide.
hyperalgesia. Together these data support the use of combined CB1 and CB2 receptor agonists in the development of strategies for the treatment of tumor-related pain.

Peripheral CB2 receptors reduce mechanical hyperalgesia

The antihyperalgesic effect of AM1241 was mediated by CB2 receptors in this study because the effect was dose-dependent and blocked by a CB2 receptor antagonist that had no effect on the CB1 receptor agonist under the same experimental conditions. Although some components of CB2 receptor-mediated analgesia are mediated through actions on the central nervous system following systemic injection (Hohmann et al., 2005; Yamamoto et al., 2008b; Curto-Reyes et al., 2010; Hsieh et al., 2010), the antihyperalgesic effect of AM1241 in this study was mediated locally. Injection of an effective dose of AM1241 into the paw contralateral to the tumor had no effect on hyperalgesia in the tumor-bearing paw. However, the locus of CB2 receptors that inhibit mechanical hyperalgesia has not been resolved. Progress in this area is hampered by the lack of specific antibodies that can be used in immunohistochemistry and the diversity of cell types surrounding the tumor in situ. In the periphery, CB2 receptors are predominantly expressed in skin by keratinocytes (Casanova et al., 2003; Ibrahim et al., 2005) and the Langerhans cells (Oka et al., 2006) as well as by immune cells (Munro et al., 1993). Relevant to this study, the fibrosarcoma tumors also express CB2 receptors, but to date we have found no evidence that the expression of CB2 receptors is induced in somatosensory neurons that innervate the tumor-bearing limb (unpublished observation).
Although our results are consistent with a local, CB2 receptor-mediated effect of AM1241 on mechanical sensitivity in a rat model of inflammation (Gutierrez et al., 2007) and 2AG in a rat model of neuropathic pain (Desroches et al., 2008), a local CB2-receptor mediated effect of AM1241 on mechanical allodynia in a similar model of bone tumor was not confirmed (Curto-Reyes et al., 2010). The difference in results in the two studies of tumor-related pain may reflect differences in the tumor growth at the two sites (calcaneous bone versus tibia), the bioavailability of the two receptor antagonists after local injection, the assays (changes in threshold versus attenuation of a suprathreshold response) or the expression of CB2 receptors at the site of testing for mechanical hyperalgesia in the two models. In this study, the tumor site was closer to the surface of the hind paw. In light of evidence that keratinocytes are intimately related to the transduction of stimuli in somatosensory neurons (Koizumi et al., 2004) and that factors released from tumors can affect the expression of proteins in neurons (Khasabova et al., 2007; Schweizerhof et al., 2009), we speculate that differential changes in expression of CB2 receptors in skin may contribute to the difference in results of the two models. Alternatively, as immune cells also express CB2 receptors and release pronociceptive chemicals, a difference in the distribution of these cells at the testing site in the two models may also be a factor.

An earlier report provided evidence that AM1241 evoked thermal analgesia in rats and mice by promoting the release of β-endorphin from keratinocytes. Thus, effects of AM1241 were blocked by ablation of the μ-opioid receptor either pharmacologically with naloxone or by genetic deletion (Ibrahim et al., 2005). Evidence that systemic injection of naloxone blocks the inhibitory effect of systemic administration of AM1241 on thermal hyperalgesia in a rat model of peripheral inflammation (Yao et al., 2008) but not that of other synthetic CB2 receptor agonists under similar conditions (A-796260, Yao et al., 2008; A-836339, Yao et al., 2009; GW405833, Whiteside et al., 2005) suggests that the effect is specific to AM1241. However, given the use of systemic drug administration in these studies, the site of interaction may be within the central nervous system rather than in the periphery. Further, the μ-opioid receptor-dependent effect of AM1241 may be limited to attenuation of thermal nociception associated with inflammation. This hypothesis is based on evidence that the antiallodynic effect of AM1241 was not blocked by a systemic injection of naloxone in a model of neuropathic pain (Hsieh et al., 2010). In this study, local injection of naloxone did not block the effect of AM1241, thereby excluding the likelihood that its effect was mediated by release of an endogenous opioid receptor ligand. Importantly, the intraplantar dose of naloxone effectively blocked the intraplantar dose of morphine that produced a comparable level of mechanical analgesia, thereby, confirming that the analgesia was mediated locally.

Synergy of cannabinoid receptor ligands
These data are the first documentation of a peripherally mediated synergy between a CB1 and CB2 receptor agonist in a nociceptive assay. The results with the synthetic CB1 agonist ACPA are consistent with our earlier report that anandamide decreased mechanical hyperalgesia by approximately 50% in the same model when used in the same experimental protocol (Khasabova et al., 2008). Importantly, control experiments validated that the effect of ACPA was mediated locally through CB1 receptors. Activation of CB1 receptors on sensory neurons innervating the skin decreases the transduction of mechanical stimuli (Agarwal et al., 2007; Hsieh et al., 2008; Potenzieri et al., 2008). Our earlier study provided evidence that an increase in the expression of CB1 receptors by a population of somatosensory neurons that is likely to be nociceptive contributes to the anti-hyperalgesic effect of CB1 receptor agonists in this model.

Evidence of synergy in the interaction of CB1 and CB2 receptor agonists supports the therapeutic advantage of peripheral cannabinoid therapy in treating tumor-related pain and presents a challenge. AM1241 exhibited decreased efficacy at the highest dose tested alone, and this also occurred at the highest dose tested in combination with ACPA. The decrease in the analgesic effect of the CB2 agonist at the high dose may be mediated by recruitment of eosinophils and exacerbation of release of inflammatory mediators (Oka et al., 2006). It is likely that the effect will decrease by adjusting the dose ratio. This speculation is based on evidence that the nonselective cannabinoid receptor agonist WIN 55212-2 reduced mechanical hyperalgesia by 94% in the same model with the same route of administration (Potenzieri et al., 2008).

Conclusion
Currently there is considerable interest in the modulation of pain with CB2 receptor agonists (Anand et al., 2009). We demonstrated that the local administration of a CB2 receptor agonist reduced mechanical hyperalgesia in a murine model of tumor pain. CB2 receptor agonists have several significant pharmacological advantages over CB1 receptor agonists as well as opiates in this model: tolerance does not develop to the antihyperalgesic effect (Hald et al., 2008; Leichsenring et al., 2009; Lozano-Ondoua et al., 2010), the growth of a variety of tumor cell types is impaired (Pisanti et al., 2009; Lozano-Ondoua et al., 2010) and effects on the central nervous system associated with the use of the other drugs are lacking. Moreover, the data address two strategies recently cited for enhancing the therapeutic potential of cannabinoids: targeting multiple cannabinoid receptors and developing peripherally restricted ligands (Pertwee, 2009). Evidence that synergy occurred in the analgesic effects of a CB1
receptor ligand in combination with a CB2 receptor ligand when injected peripherally at the tumor site supports the utility of these strategies in developing novel therapeutics for the management of cancer pain.

Acknowledgements
This study was supported by Grants from the National Institute for Drug Abuse (DA011471, D.A.S.) and the National Cancer Institute [CA091007 (D.A.S.), CA138684 (V.S.S.)].

Conflicts of interest
None declared.

References
Greco MT, Corli O, Montanari M, Deandrea S, Zagonel V, Apolone G; on behalf of the National Cancer Institute [CA091007 (D.A.S.), Institute for Drug Abuse (DA011471, D.A.S.) and the National Institute for Arthritis, Diabetes, and Digestive and Kidney Diseases (DK059637, D.A.S.)]. This study was supported by Grants from the National Institutes of Health (1R01CA091007-01A1, D.A.S.) and the American Cancer Society (MRG-1428, D.A.S.).
Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG (1999). Agonist-inverse agonist characterization at CB1 and CB2 receptor agonists in analgesia Khasabova et al. 615

